skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gray, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Circulation in the Gulf of Mexico is dominated by the Loop Current and associated mesoscale eddies. These mesoscale eddies pose a safety risk to offshore energy production and potential dispersal of large-scale pollutants like oil. We use a data-driven, physics-informed, and numerically consistent deep learning–based ocean emulator called OceanNet to generate a 120-day forecast of the sea surface height (SSH) in the eastern Gulf of Mexico. OceanNet uses a new dataset of high-resolution data assimilative ocean reanalysis (1993–2022) as input. This model is trained using years 1993–2018 and evaluated on four eddies during years 2019–21. For comparison, we use a state-of-the-art numerical ocean model to generate a dynamical model prediction initialized every 5 days from 27 April 2019 to 1 April 2020 (during eddies Sverdrup and Thor) using persistent forcing and boundary conditions. The dynamical model takes seven wall-clock days to run, whereas OceanNet runs in minutes. Edges of Loop Current eddies (LCEs) pose the most potent risk to offshore energy operations and pollutant dispersal due to strong water velocities. Therefore, most of the analysis focuses on edge accuracy, quantified by the modified Hausdorff distance. The edge of the LCEs is defined by the 17-cm sea surface height contour, which generally coincides with the strongest water velocity. The OceanNet prediction outperforms both persistence and the dynamical model prediction. Overall, this new ocean emulator provides a promising new approach to generate seasonal forecasts of LCEs and generates large model ensembles efficiently to quantify forecast uncertainty that is long needed by scientists and decision-makers for offshore operations. Significance StatementCirculation in the Gulf of Mexico (GoM) is dominated by the energetic Loop Current and associated mesoscale eddies (typically 150–400 km in diameter). As these eddies propagate westward through the Gulf, they pose a safety risk to offshore energy production and potential large-scale pollutant dispersal. We used ocean model output (1993–2022) to train a data-driven ocean emulator called OceanNet that generates a seasonal (up to 120 day) prediction of sea surface height (SSH) in the eastern GoM. For comparison, a simple dynamical model prediction is also evaluated. OceanNet’s performance is assessed with a focus on edge accuracy, the most potent risk to offshore energy operations and pollutant dispersal. Overall, OceanNet performs well for a seasonal forecast and shows great potential for further development. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract. Many meteorological and oceanographic processes throughout the eastern US and western Atlantic Ocean, such as storm tracks and shelf water transport, are influenced by the position and warm sea surface temperature of the Gulf Stream (GS) – the region's western boundary current. Due to highly nonlinear processes associated with the GS, predicting its meanders and frontal position has been a long-standing challenge within the numerical modeling community. Although the weather and climate modeling communities have begun to turn to data-driven machine learning frameworks to overcome analogous challenges, there has been less exploration of such models in oceanography. Using a new dataset from a high-resolution data-assimilative ocean reanalysis (1993–2022) for the northwestern Atlantic Ocean, OceanNet (a neural-operator-based digital twin for regional oceans) was trained to predict the GS's frontal position over subseasonal to seasonal timescales. Here, we present the architecture of OceanNet and the advantages it holds over other machine learning frameworks explored during development. We also demonstrate that predictions of the GS meander are physically reasonable over at least a 60 d period and remain stable for longer. OceanNet can generate a 120 d forecast of the GS meander within seconds, offering significant computational efficiency. 
    more » « less
  3. Abstract While data-driven approaches demonstrate great potential in atmospheric modeling and weather forecasting, ocean modeling poses distinct challenges due to complex bathymetry, land, vertical structure, and flow non-linearity. This study introduces OceanNet, a principled neural operator-based digital twin for regional sea-suface height emulation. OceanNet uses a Fourier neural operator and predictor-evaluate-corrector integration scheme to mitigate autoregressive error growth and enhance stability over extended time scales. A spectral regularizer counteracts spectral bias at smaller scales. OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream), focusing on the task of seasonal prediction for Loop Current eddies and the Gulf Stream meander. Trained using historical sea surface height (SSH) data, OceanNet demonstrates competitive forecast skill compared to a state-of-the-art dynamical ocean model forecast, reducing computation by 500,000 times. These accomplishments demonstrate initial steps for physics-inspired deep neural operators as cost-effective alternatives to high-resolution numerical ocean models. 
    more » « less
  4. Abstract. Many meteorological and oceanographic processes throughout the eastern United States and western Atlantic Ocean, such as storm tracks and shelf water transport, are influenced by the position and warm sea surface temperature of the Gulf Stream (GS)- the region's western boundary current. Due to highly nonlinear processes associated with the GS, predicting its meanders and frontal position have been long-standing challenges within the numerical modeling community. While the weather and climate modeling communities have begun to turn to data-driven machine learning frameworks to overcome analogous challenges, there has been less exploration of such models in oceanography. Using a new dataset from a high-resolution data-assimilative ocean reanalysis (1993–2022) for the Northwest Atlantic Ocean, OceanNet (a neural operator-based digital twin for regional oceans) was trained to identify and track the GS’s frontal position over subseasonal-to-seasonal timescales. Here we present the architecture of OceanNet and the advantages it holds over other machine learning frameworks explored during development while demonstrating predictions of the Gulf Stream Meander are physically reasonable over at least a 60-day period and remain stable for longer. 
    more » « less
  5. Abstract Building upon recent advancements in AI‐driven atmospheric emulation, we present a novel framework for AI‐based ocean emulation, downscaling, and bias correction, with a specific focus on high‐resolution modeling of the regional ocean in the Gulf of Mexico. Emulating regional ocean dynamics poses distinct challenges due to intricate bathymetry, complex lateral boundary conditions, and inherent limitations of deep learning models, including instability and the potential for hallucinations. In this study, we introduce a deep learning framework that autoregressively integrates ocean surface variables at 8 km spatial resolution over the Gulf of Mexico, maintaining physical consistency over decadal time scales. Simultaneously, the framework downscales and bias‐corrects the outputs to 4 km resolution using a physics‐informed generative model. Our approach demonstrates short‐term predictive skill comparable to high‐resolution physics‐based simulations, while also accurately capturing long‐term statistical properties, including temporal mean and variability. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  6. Coral reef soundscapes are increasingly studied for their ecological uses by invertebrates and fishes, for monitoring habitat quality, and to investigate effects of anthropogenic noise pollution. Few examinations of aquatic soundscapes have reported particle motion levels and variability, despite their relevance to invertebrates and fishes. In this study, ambient particle acceleration was quantified from orthogonal hydrophone arrays over several months at four coral reef sites, which varied in benthic habitat and fish communities. Time-averaged particle acceleration magnitudes were similar across axes, within 3 dB. Temporal trends of particle acceleration corresponded with those of sound pressure, and the strength of diel trends in both metrics significantly correlated with percent coral cover. Higher magnitude particle accelerations diverged further from pressure values, potentially representing sounds recorded in the near field. Particle acceleration levels were also reported for boat and example fish sounds. Comparisons with particle acceleration derived audiograms suggest the greatest capacity of invertebrates and fishes to detect soundscape components below 100 Hz, and poorer detectability of soundscapes by invertebrates compared to fishes. Based on these results, research foci are discussed for which reporting of particle motion is essential, versus those for which sound pressure may suffice. 
    more » « less
  7. Abstract BackgroundIdiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and usually fatal lung disease of unknown reasons, generally affecting the elderly population. Early diagnosis of IPF is crucial for triaging patients’ treatment planning into anti‐fibrotic treatment or treatments for other causes of pulmonary fibrosis. However, current IPF diagnosis workflow is complicated and time‐consuming, which involves collaborative efforts from radiologists, pathologists, and clinicians and it is largely subject to inter‐observer variability. PurposeThe purpose of this work is to develop a deep learning‐based automated system that can diagnose subjects with IPF among subjects with interstitial lung disease (ILD) using an axial chest computed tomography (CT) scan. This work can potentially enable timely diagnosis decisions and reduce inter‐observer variability. MethodsOur dataset contains CT scans from 349 IPF patients and 529 non‐IPF ILD patients. We used 80% of the dataset for training and validation purposes and 20% as the holdout test set. We proposed a two‐stage model: at stage one, we built a multi‐scale, domain knowledge‐guided attention model (MSGA) that encouraged the model to focus on specific areas of interest to enhance model explainability, including both high‐ and medium‐resolution attentions; at stage two, we collected the output from MSGA and constructed a random forest (RF) classifier for patient‐level diagnosis, to further boost model accuracy. RF classifier is utilized as a final decision stage since it is interpretable, computationally fast, and can handle correlated variables. Model utility was examined by (1) accuracy, represented by the area under the receiver operating characteristic curve (AUC) with standard deviation (SD), and (2) explainability, illustrated by the visual examination of the estimated attention maps which showed the important areas for model diagnostics. ResultsDuring the training and validation stage, we observe that when we provide no guidance from domain knowledge, the IPF diagnosis model reaches acceptable performance (AUC±SD = 0.93±0.07), but lacks explainability; when including only guided high‐ or medium‐resolution attention, the learned attention maps are not satisfactory; when including both high‐ and medium‐resolution attention, under certain hyperparameter settings, the model reaches the highest AUC among all experiments (AUC±SD = 0.99±0.01) and the estimated attention maps concentrate on the regions of interests for this task. Three best‐performing hyperparameter selections according to MSGA were applied to the holdout test set and reached comparable model performance to that of the validation set. ConclusionsOur results suggest that, for a task with only scan‐level labels available, MSGA+RF can utilize the population‐level domain knowledge to guide the training of the network, which increases both model accuracy and explainability. 
    more » « less
  8. Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating. 
    more » « less